A Data-Driven Approach to Lubricant Selection

Automotive supplier Shiloh Industries has embarked on a rigorous lubricant-testing and evaluation process, with the goals of streamlining its inventory of stamping-lubricants; eliminating the use of chlorinated paraffins; and identifying the right lubricant for stamping advanced high-strength steels.

BY BRAD F. KUVIN, EDITOR

Chlorinated paraffins (CPs) in lubricants soon will be banned by the Environmental Protection Agency, possibly as early as July 2017. Faced with that stark reality, technical specialist Cliff Hoschouer at Shiloh Industries, Valley City, OH, has embarked on a proactive and engineering-driven course to evaluate the company’s stamping-lubricant options moving forward.

Hoschouer’s mission is to identify the ideal lubricants to handle the firm’s current projects—Shiloh employs CP-containing lubricants for difficult deep-drawing applications. At the same time, he’s looking ahead at the influx of work requiring the forming of advanced high-strength steels (AHSS). For this work, a new lubricant strategy also is required.

“We’re deep-drawing mild steels, for oil pans for example,” shares Hoschouer. “We also form a lot of TRIP 780 and DP600 AHSS grades and blank DP980 steel, and we stamp some stainless steel and aluminum.” That combination of work has led to the use of about 10 different lubricants throughout the company—Shiloh operates several stamping plants throughout North America, and also has two plants in Europe. Some 20 percent of its work requires the use of CP-containing lubricants.

“As we look ahead to more and more AHSS work coming in,” continues Hoschouer, “and the banning of CPs, we felt it was time to reevaluate our
lubricant program and streamline, We'd like to settle on four or five lubricants that can handle our entire book of business, and that also will equip us for the future—maybe one lube for aluminum, one for stainless steel, and one or two for deep-drawing of mild steels and for stamping AHSS.”

An Engineering Approach

Shiloh has been on a mission in recent years, focused on being a “lightweight solutions provider,” Hoschouer says. “That's leading the company into more AHSS work, and we need to be ready to handle that. DP980 will be a workhorse.”

In 2015 Shiloh experienced a record year for new business, according to reports, adding new customers and new products at a rapid rate. It’s transforming itself from a blanking company into a product-development company, becoming more integrated with customers and vehicle designs. That means a lot of new-product development—it launched 527 new products in 2015, three times as many as in 2014, and 60 percent of its new sales represent the sale of lightweighting technology. That, and previously noted factors, have Hoschouer and others at Shiloh thinking ahead.

Such forward thinking led Hoschouer, in mid-2015, to spearhead Shiloh's lubricant-evaluation program, which concludes later this year. The company formed a team of people across multiple disciplines to devise a plan that would take into consideration how a shift to new lubricants would impact the company, as well as its Tier One and OEM automotive-industry customers. The plan of action: Take a scientific approach to testing a variety of lubricants on multiple workpiece materials on the most challenging of applications.

Hoschouer's team began by identifying the CP-containing lubricants where the company was at risk, and then invited four suppliers to submit potential replacements to handle its most difficult mild-steel deep-drawing work, and its challenging AHSS parts. To conduct its trials, the team enlisted the help of a new tool and test method developed by lubricant manufacturer Irmco, Evanston, IL, in partnership with Bennett Tool & Die, Nashville, TN, and the GE Advanced Mfg. Development Group, Louisville, KY. The tool, dubbed the Irmco iTool, performs controlled and monitored cup-draw testing. Testing follows a methodology based on research conducted by Dr. Taylan Altan at the Ohio State University and the Center for Precision Forming, in Columbus, OH. The tool is outfitted to measure and compare the frictional forces and deformation temperatures exhibited by one lubricant versus another.

iTool in Action

We caught up with Hoschouer and a team from Irmco at Hyson headquarters near Cleveland, OH, earlier this year. Hyson's 300-ton Komatsu servo press was enlisted to put the iTool through its paces on behalf of Shiloh.

The Irmco iTool Consortium

Ten years ago, Dr. Taylan Altan invited lubricant supplier Irmco to participate in his metalforming research at The Ohio State University's Center for Precision Forming, and then later when he joined the Edison Welding Institute Forming Center. Dr. Altan’s team was conducting cup-draw tests (CDT) on advanced high-strength steels (AHSS). The CDT is a practical friction test, and Irmco had experienced good correlation of its lubricant performance on difficult draw in the real world. Unlike benchtop friction equipment, the CDT utilizes an actual press and die.

Irmco envisioned a need for stampers to evaluate lubricants in a controlled, unbiased manner—without using their own, valuable production-press time. It also recognized the industry's need to better understand the capabilities of servo presses, and to gauge how forming in a servo press impacts tooling and part temperature.

After presenting these concepts at Great Designs in Steel, in May 2015, the Irmco iTool Consortium was born. The consortium: GE Louisville’s Advanced Mfg. Development Team, Bennett Tool and Hyson. Shiloh and other metal stampers also have come on board.